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Abstract
A relation between a multi-state complex angular momentum (CAM) pole
residue and the corresponding CAM-state wavefunction is derived for a
real symmetric potential matrix. The result generalizes a residue formula
available for single-channel atomical collision systems and it is based on a
diagonalization of the S matrix together with the use of exact Wronskian
relations.

PACS numbers: 03.65.Ca, 03.65.Nk

1. Introduction

There has been a renewed interest in the complex angular momentum (CAM) approach to
analysing elastic and inelastic scattering of atoms and molecules [1–6]. Several numerical
methods for locating the CAM (Regge) poles and for determining the pole residues have been
developed over the past four decades (see references in [6]). Some of these methods, e.g. the
direct Schrödinger method [7], the eigenvalue moment method [8] and the complex absorbing
potential technique [1] utilize a particular quadrature formula for determining the pole residues
based on the corresponding CAM-state wavefunction. Such a formula is presently available
only for single-channel scattering, obtained originally by Newton [9] and recently re-derived
by Sokolovski et al [1].

Following [1] the single-channel radial Schrödinger equation is given by

d2ψ�(r)

dr2
+

(
k2 − U(r) − �(� + 1)

r2

)
ψ�(r) = 0, (1)

where k is the asymptotic wave number, � is the angular momentum quantum number and
U(r) is the reduced potential that vanishes as r → +∞. The regular scattering solution can
be normalized as

ψ�(r) ∼ −S−1
� exp(−ikr + iπ�/2) + exp(ikr − iπ�/2), as r → +∞, (2)
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where S� is the S-matrix element. Near the nth CAM pole, �n, one has S� ∼ ρn/(� − �n) with
ρn being the pole residue, so that the CAM-state wavefunction ψn(r) becomes

ψn(r) ∼ exp(ikr − iπ�n/2), as r → +∞. (3)

The single-channel residue is then obtained by the formula (see [1])

ρn = ik

�n + 1
2

(∫ ∞

0
ψ2

n(r)r−2 dr

)−1

, n = 1, 2, . . . . (4)

In the present work a generalization of (4) to coupled spherically symmetric scattering
states is derived. In section 2 an important Wronskian relation that contains information
about the multichannel residues is derived. Section 3 discusses general properties of the
residue matrix. The final residue formula is obtained in section 4 and conclusions are given in
section 5.

2. General Wronskian relations

Consider the matrix version of the radial Schrödinger equation [6]:

d2Ψ�(r)

dr2
+ K2

�(r)Ψ�(r) = 0, (5)

where with the use of the Kronecker delta symbol δij ,[
K2

�(r)
]
ij

= δij

(
k2
j − �(� + 1)

/
r2) − Uij (r). (6)

Here the reduced potential matrix Uij (r) is symmetric and Uij (r) → 0, as r → +∞. The
regular matrix wavefunction may be normalized to satisfy the boundary conditions:

Ψ�(0) = 0, (7)

Ψ�(r) ∼ −e(−)
� (r)S−1

� + e(+)
� (r), as r → +∞, (8)

with S� being the S matrix and where the diagonal in- and outgoing, propagating waves e(±)
� (r)

are given by [
e(±)
� (r)

]
ij

= δij k
−1/2
j e±i(kj r−π�/2). (9)

Note that the amplitudes of the asymptotic waves here are modified by the wave numbers kj

compared to the normalization in (2) and (3).
To proceed, consider the transposed regular solution satisfying

d2ΨT
� (r)

dr2
+ ΨT

� (r)K2
�(r) = 0 (10)

with the boundary conditions

ΨT
� (0) = 0, (11)

[Ψ�(r)]
T ∼ − [

S−1
�

]T
e(−)
� (r) + e(+)

� (r), as r → +∞, (12)

and consider also the related solution Ψ̃�(r) ≡ ∂Ψ�(r)/∂� satisfying

d2Ψ̃�(r)

dr2
+ K2

�(r)Ψ̃�(r) = 2� + 1

r2
Ψ�(r) (13)
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with the boundary conditions

Ψ̃�(0) = 0, (14)

Ψ̃�(r) ∼ −e(−)
� (r)

[
i
π

2
S−1

� +
∂S−1

�

∂�

]
− i

π

2
e(+)
� (r), as r → +∞. (15)

From the differential equations (5), (10) and (13) one obtains the two Wronskian relations

dW
(
ΨT

� ,Ψ�

)/
dr = 0, (16)

dW
(
ΨT

� , Ψ̃�

)/
dr = 2� + 1

r2
ΨT

� Ψ�, (17)

with the Wronskian defined as W(X, Y) = X dY
dr

− dX
dr

Y. Since Ψ�,ΨT
� and Ψ̃� vanish at the

origin one obtains from (16) and (17) the following results:

W
(
ΨT

� ,Ψ�

) = 0, (18)

W
(
ΨT

� , Ψ̃�

)
(+∞) =

∫ +∞

0

2� + 1

r2
ΨT

� (r)��(r) dr. (19)

A study of the analytic forms of the solutions ��(r) and ΨT
� (r) as r → +∞ gives

W
(
ΨT

� ,Ψ�

) = 2i
(
S−1

� − [
S−1

�

]T )
, (20)

which together with (18) implies the symmetry

S� = [S�]T . (21)

Using the expressions in (12) and (15) together with the symmetry (21), one also obtains

W
(
ΨT

� , Ψ̃�

)
(+∞) = 2i

∂S−1
�

∂�
−2πS−1

� . (22)

Equations (19) and (22) yield

2i
∂S−1

�

∂�
− 2πS−1

� =
∫ +∞

0

2� + 1

r2
ΨT

� (r)Ψ�(r) dr. (23)

In the following section we sort out the residue information from the general result (23).

3. Properties of the residue matrix

Sufficiently near the nth CAM pole corresponding to a given channel ‘m’ one may write the S
matrix as

S� ∼ R(m)
n

� − �
(m)
n

, (24)

where R(m)
n is the residue matrix at the pole and considered to be independent of �. In case there

is a complete de-coupling between the different channels the CAM poles occur in one diagonal
S-matrix element only, while the other elements stay finite. It is clear that the residue elements
corresponding to the finite S-matrix elements will vanish. In fact, all but one element in R(m)

n

are zero in the de-coupled case. The residue matrix R(m)
n is also in the general case a singular

matrix of rank 1 (see Gell-Mann or Charap and Squires in [11]). This means that even if,
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generally, all S-matrix elements actually have poles, there exists a particular, complex-valued
similarity transformation of S� to its diagonal form where only one element has a pole.

To analyse the residue matrix in more detail one assumes S� is symmetric with respect
to transposition (see equation (21)). Since S� also has complex-valued elements it can be
represented in the form

S� = Os� OT , (25)

where O is an orthogonal (orthonormal), complex-valued matrix and s� is the complex
diagonalized S matrix. This statement requires that the columns om of O are the orthonormal
eigenvectors of the S matrix corresponding to the eigenvalues, s

(m)
� , defining the elements of

the diagonal matrix s�. In fact, the eigenvalue equations S�om = s
(m)
� om and their transposed

counterparts, distinguished by substituting m → m′, can be combined to the scalar identities

0 = (
s
(m)
� − s

(m′)
�

)
oT

m′om. (26)

From (26) one deduces the existence of orthonormal columns of O implying the property
O−1 ≡ OT . Each diagonal element of s� thus represents an ‘eigenchannel’ S-matrix element
and any CAM pole position � = �(m)

n corresponds to a unique combination of a pole number
‘n’ and an eigenchannel ‘m’, unless there is a so-called channel degeneracy. Now, writing the
diagonalized S matrix near an arbitrary CAM pole as

s� ∼ ρ(m)
n

� − �
(m)
n

, � → �(m)
n , (27)

the diagonal matrix ρ(m)
n contains only one non-vanishing element in the mth diagonal position.

According to (25) the complete residue matrix is obtained from the formula

R(m)
n = Oρ(m)

n OT , (28)

which clearly shows that R(m)
n is a highly singular matrix just like ρ(m)

n .
It turns out to be advantageous to extract the residues from the inverse S−1

� , containing
finite elements, rather than from S�. From equation (25) one has

S−1
� = Os−1

� OT . (29)

In fact, the matrix O should be determined from relation (29) in the first place. The complex
angular momentum pole condition is now conveniently written as

det S−1
� = det s−1

� = 0. (30)

In s−1
� one element, say

(
s
(m)
�

)−1
, vanishes at a CAM pole, the others stay nonzero and finite.

This vanishing element corresponds to a zero eigenvalue of S−1
� as � → �(m)

n and it has
information about the pole residue, the others do not. If om is the eigenvector corresponding
to the eigenvalue

(
s
(m)
�

)−1
, then[

S−1
� om

]
�=�

(m)
n

= 0. (31)

By two inner multiplications of equation (29) with the eigenvector om, it is possible to single
out the vanishing eigen-channel element. Hence, near a CAM pole(
s
(m)
�

)−1 ≡ [
s−1
�

]
mm

= oT
mS−1

� om ∼ (
� − �(m)

n

)(
ρ(m)

n

)−1
, as � → �(m)

n . (32)

In this formula the pole residue ρ(m)
n is independent of �, but S−1

� and om are not. By
differentiating (32) with respect to �, one obtains after simplifications the relation

ρ(m)
n =

(
oT

m

∂S−1
�

∂�
om

)−1

�=�
(m)
n

, (33)
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since om is an eigenvector of the channel ‘m’ corresponding to the zero eigenvalue of S−1
� . The

single, scalar quantity (33) is the only nonzero element of the diagonal residue matrix ρ(m)
n ,

and by (28) it is an important factor of the final residue matrix R(m)
n . When also the individual

elements of the matrix O are introduced one has[
R(m)

n

]
ij

= ρ(m)
n OimOjm. (34)

Formula (34) reveals the simple structure of the multi-state CAM residues that in the 1960s
was discussed in more abstract terms [11]: each channel ‘m’ has a so-called string of CAM
poles counted by the number ‘n’; each such CAM pole defines a matrix of residues determined
by the elements of the mth column, om, of the matrix O.

4. Residues obtained from the CAM-state wavefunction

According to formulae (23), (31), (33) and (34) one obtains a relation between a residue and
the corresponding eigenchannel CAM-state column wavefunction in the form

ρ(m)
n = i

�
(m)
n + 1/2

(∫ +∞

0

[
ψ(m)

n (r)
]T

ψ(m)
n (r)r−2 dr

)−1

, (35)

where the eigenchannel CAM-state wavefunction ψ(m)
n (r) is defined by

ψ(m)
n (r) = Ψ

�
(m)
n

(r)om. (36)

Formula (35) depends on the normalization of the wavefunction Ψ�(r), which determines the
normalization of both ΨT

� (r) and Ψ̃�(r). The column wavefunction ψ(m)
n (r) satisfies

ψ(m)
n (r) ∼ e(+)

� (r)om, as r → +∞ and � → �(m)
n , (37)

i.e. it contains no incoming wave components as r → +∞.
Finally, since (35) determines the single nonzero element in the diagonal residue matrix

ρ(m)
n , formula (34) provides the complete residue matrix for the original problem.

5. Conclusion

An exact multi-channel formula for calculating CAM pole residues is derived from certain
Wronskian relations involving the regular Schrödinger matrix solution and its partial derivative
with respect to the complex angular momentum. The formula also involves an orthogonal
complex-valued matrix that can always be determined numerically.
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